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ABSTRACT 

The three-dimensional equation of radiative transfer is formally solved using a Fourier-Riccati approach 
while calculations are performed on cloudy media embedded in a two-dimensional space. An extension to 
Stephens’ work, this study addresses the coupling between space and angle asserted by the equation of transfer. 
In particular, the accuracy of the computed radiation field as it is influenced by the angular resolution of the 
phase function and spatial discretization of the cloudy medium is discussed. The necessity of using a large 
number of quadrature points to calculate fluxes even when the phase function is isotropic for media exhibiting 
vertical and horizontal inhomogeneities is demonstrated. Effects of incorrect spatial sampling on both radiance 
and flux fields are also quantified by example. Radiance and flux comparisons obtained by the Fourier-Riccati 
model and the independent pixel approximation for inhomogeneous cloudy media illustrate the inadequacy of 
the latter even for tenuous clouds. 

1. Introduction 

Radiative transport is intimately connected with 
numerous important climatological processes. It is 
therefore reasonable to suppose that better under- 
standing of these processes can be attained by a more 
accurate treatment of cloud-radiation interactions. 
Although it is evident that clouds are inhomogeneous 
structures, little attention has been paid to the effects 
exerted by cloud microstructure on the radiation field 
(cf. Lovejoy et al. 1990 and references therein). Hence, 
it is expected that inadequate treatment of cloud mi- 
crostructure must introduce errors in the computed 
radiances whose magnitudes cannot be known nor are 
easily estimable and can lead to paradoxes such as the 
albedo paradox (Wiscombe 1984). The problem is 
complex, involving in the general case the solution of 
the three-dimensional radiative transfer equation 
(RTE). 

To simplify the problem, often the effects of hori- 
zontal inhomogeneity are artificially introduced by ei- 
ther subdividing a region of space into areas, each as- 
sumed uniform and over which plane-parallel theory 
is assumed locally applicable (the so-called independent 
pixel approximation ), or through the related notion of 
a cloud fraction. The latter implies that cloud and ra- 
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diance fields are uncorrelated ( Stephens 1988 ) . Con- 
versely, the “averaged” optical properties of naturally 
occurring clouds, such as their phase function or optical 
depth, are often derived by associating radiances exiting 
plane-parallel slabs to these optical properties as if the 
correspondence was one to one. Although abundant 
evidence exists attesting to the nonuniformity of clouds 
( King et al. 198 1; Lovejoy 1982; Derr and Gunter 1982; 
Tsay and Jayaweera 1984; Rhys and Waldvogel 1986; 
Kuo et al. 1988; Welch et al. 1988a,b; Cahalan and 
Joseph 1989; Yano and Takeuch 1990) and radiation 
(Cahalan 1989; Weilicki and Welch 1986; Gabriel and 
Lovejoy 1988), the continuing use of plane-parallel 
theory is probably rooted in the hope that over suffi- 
ciently large spatial scales clouds have a plane-parallel 
character or equivalently, that the effects of horizontal 
structures present in clouds are unimportant. 

This paper presents a method of solution of the RTE 
that allows for the investigation of the relationship be- 
tween spatial sampling of the cloudy medium and the 
emerging radiances and the angular resolution required 
of these radiances to accurately calculate the flux fields. 
While there are several works detailing how to solve 
the two- and three-dimensional RTE (most of these 
are summarized in Table 1 ), the important spatio- 
angular coupling implied by the transfer equation has 
not received adequate attention. To address this prob- 
lem, a spectral model of the RTE has been formulated 
and implemented. Known herein as the Fourier-Ric- 
cati model, it is representative of a large class of spectral 
models and is an extension of the work by Stephens 
(1986). 

The orientation of this work is pedagogical. Clouds 
are characterized by spatially continuous, periodic ex- 
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TABLE 1. Literature survey of techniques used to solve the two- and three-dimensional radiative transfer equation. 
This survey extends from 1975 to 1992. 

Year Reference Physical situation Method of solution 

1975. 1978 Romanova 

1976 Romanova 

1981 Romanova and 
Tarabukhina 

1983 Mironota 

1984a. b Diner and 
Martonchik 

1985 Diner and 
Martonchik 

1985 Romanova 

1986 

1988 

1989 

1990a 

1990b 

Stephens 

Stephens 

Calahan 

Lovejoy et al. 

Gabriel et al. 

Uniform illumination of a pcrlc~iiic cloud at 
its upper boundary. Harmonic 
extinction, scattering functions of the 
form: CY = (x0( 1 + t cos(o\)) and 
s = .hJ( 1 + t cos(wx)). 

Uniform illumination of a periodic cloud st 
its upper boundary. Extinction and 
scattering functions are expressed as a 
Fourier series. 

See 1976 reference. 

See 1976 reference. 

Uniform illumination of a periodic, three- 
dimensional. vertically nonuniform 
atmosphere bounded by a reflecting, 
nonuniform surface. 

As in 1984a,b reference. 

See 1976 reference. The possibility of 
gaseous absorption is allowed provided 
that the volume absorption coefficient is 
uniform within the cloud layer and that 
the transmission function of the gas can 
be approximated by exponential sum 
fitting. A method is developed to 
calculate the spatially averaged 
absorption without requiring the 
spatially averaged albedo or 
transmission. 

Uniform illumination of a tuo-horizontally 
inhomogeneous cloud subject to periodic 
boundary conditions. 

See 1986 reference. 

Fractal clouds characterized by a single 
parameter with periodic and open 
boundary conditions subject to uniform/ 
slant illumination on the upper 
boundary. 

This paper develops discrete angle radiative 
transfer theory for fractal and 
homogeneous clouds. 

Fractal clouds with normal illumination 
subject to periodic and open boundary 
conditions. Conservative scattering was 
assumed. 

Perturbation series expansion of the radiance. 
Elements of series decomposed by Fourier 
expansion. Analytic expressions for single 
scattering and for the radiance are found in the 
small-angle approximation associated with a 
strongly forward-peaked phase function. The 1978 
paper provides some numerical results. 

Use of invariance principles to formulate expressions 
for scattering and transmission operators. 
Medium assumes only horizontal 
inhomogeneities. 

As in 1976 reference. Numerical solutions obtained 
for isotropic phase functions in semi-infinite 
atmospheres over a range of single scattering 
albedos. 

,4s in 1976 reference. This paper is a correction to 
the 1975 paper of Romanova. Numerical results 
are provided for phase functions associated with 
various monodispersions. 

Transformation of three-dimensional equation of 
transfer to a system of one-dimensional transfer 
equations using Fourier transform technique. 
Numerical results obtained by Gauss-Seidel 
iterations. 

lntcraction principle used to develop adding and 
doubling technique for numerically solving the 
one-dimensional transfer equation in 1984a,b 
references. 

Perturbation method as in 1975 paper. Spatially 
averaged quantities are obtained via a Fourier 
transform technique. Phase functions are 
approximated by the delta-Eddington method. 

Media is assumed vertically uniform. Two- 
dimensional transfer equation is Fourier- 
transformed into a one-dimensional system of 
ordinary differential equations. A doubling 
method is used to calculate the radiances. Use of 
the interaction principle leads to a global response 
operators defined by a system of nonlinear matrix 
initial value problems. 

A formulation of the RTE based on scale hierarchy 
and closure is presented that provides a means for 
studying the effects of spatial inhomogeneity and 
scale interactions on the radiative transfer. 

Monte Carlo simulations and independent pixel 
approximations. 

See 1990b, 1990~. 

Renormalization of the discrete angle equations used 
to obtain a power law behavior of domain- 
averaged albedo in the thick cloud limit. 
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GABRIEL ET AL. 

TABLE 1. (Chnrinzwd) 
_. 

Physical situation Method of solution 

3127 

199oc Davis et al. See Gabriel 1990b. 

1991 Kobayashi See Stephens 1986. 

1991 Davis et al. A multifractal cloud model was 
investigated numerically for various 
mean optical depths. Periodic boundary 
conditions were applied. 

1992 O’Brien See Stephens 1986. 

1992 Evans Radiative transfer in general media subject 
to periodic boundary conditions. Media 
embedded in two dimensions. 

Discrete angle radiative transfer equations were 
solved using relaxation methods to obtain the 
radiances inside a fractal lattice. Fluxes were also 
obtained using forward Monte Carlo simulations. 

This work follows the methodology of Stephens’ 
1986 paper. Unlike in Stephens, the solar zenith 
angle is not a quadrature angle and the solution is 
determined by the discrete ordinates method. 

Forward Monte Carlo simulations were applied to 
obtain all internal and exiting radiative fields in a 
discrete angle approximation. The discrete angle 
radiative transfer equations were also solved by 
using relaxation techniques. 

Backwards Monte Carlo technique solves equation 
of transfer by a Neumann series. The high-order 
integrals are efficiently calculated by sampling the 
integrand using a Hammersley-Halton point 
sequence. Convergence of the integrals is further 
promoted by transforming path integrals to 
transmission integrals, scattering integrals from 
angle to fraction of phase function integrals. 

The spherical harmonic spatial grid method is an 
efficient numerical technique for calculating 
radiances and fluxes in media embedded in two 
dimensions. This method exploits the smooth 
angular dependence of the radiance fields, 
allowing them to be represented as a sum of 
spherical harmonic terms. Spatial derivatives are 
approximated by finite differences. This 
algorithm’s numerical efficiency derives from the 
diagonal representation of the scattering matrix. 
Boundary conditions are approximated by a 
method due to Marshak (1947). The resulting 
linear system of equation is solved iteratively by 
the conjugate-gradient method. 

tinction and scattering functions embedded in two-di- 
mensional space. Cloud distributions employed in this 
study are not truly representative of naturally occurring 
clouds. Instead, they have been kept sufficiently simple 
1) to test the radiation model, 2) to help facilitate the 
interpretation of model results, and 3) so that all that 
can be learned from these simple models will also be 
applicable to more complex situations. This is not to 
detract from the generality of the radiative transfer 
model; more realistic cloud distributions can be ac- 
commodated, but at the expense of significant com- 
puting time. 

The structure of this paper is as follows. Section 2 
contains notes on the methodologies used in solving 
the two- or three-dimensional transport equation 
spanning the years from 1975 to 1992. This section 
also contains a description of the algorithms that were 
used to verify the correctness of the implementation 
of the Fourier-Riccati method. Section 3 gives some 
background to the Riccati formulation and develops 
the spectral model. In addition, connections to other 
methods are described and for the special case of a 
vertically uniform horizontally inhomogeneous cloud, 
a convolutional interpretation of the solution to the 

radiative transfer equation is offered. Section 4 estab- 
lishes the connection between the particular Riccati 
formulation developed in this study to that employed 
in the solution to two-point boundary value problems. 
The section also discusses properties of the Fourier- 
Riccati equation such as its stability and efficiency, as 
well as technical matters concerning its numerical in- 
tegration. In section 5, the implementation of the Fou- 
rier-Riccati method is tested by comparing numerical 
results to two other methods. The dependence of the 
radiance and flux on angular and spatial resolution are 
discussed while paying particular attention to com- 
parisons of the independent pixel approximation. 

2. Review of the literature 

A perusal of the meteorological literature where ra- 
diative transfer theory is applied to clouds and atmo- 
spheres reveals that the majority of radiation calcula- 
tions to date have been performed using plane-parallel 
models (e.g., Wiscombe 1983; Harshvardan 199 1; 
Kattawar and Thompson 199 1) whose input can only 
be a vertically stratified atmosphere. However, a grow- 
ing awareness of the severe limitations imposed by 
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horizontally uniform media has prompted a number 
of investigators to develop radiative transfer models 
that can accommodate vertical and horizontal inho- 
mogeneities of clouds. Since clouds are the prime 
source of variability of atmospheric radiation, there 
has been a sustained interest in treating even simple 
geometrical shapes such as cubes, spheres, cylinders, 
and paraboloids of revolution by various methods while 
maintaining internal uniformity (e.g., Busygin et al. 
1973; McKee and Cox 1974; Davies 1976, 1978; Bark- 
Strom and Arduini 1977; Cogley 198 1; Welch and 
Zdunkowski 198 1; Preisendorfer and Stephens 1984; 
Stephens and Preisendorfer 1984). Developments by 
Avaste and Vaynikko (1974). Busygin et al. (1977), 
Aida (1977), Glazov and Titov (1979), Titov (1979, 
1980), Davies ( 1984), and others consisted in arrang- 
ing these homogeneous clouds into periodic or uni- 
formly random arrays in order to simulate cloud fields. 
By comparison, relatively little attention has been paid 
to systems with internal inhomogeneities. A broad re- 
view of such work on radiative transfer in nonuniform 
media carried out between 1955 and 1975 is given by 
Crosbie and Lindsenbardt ( 1978). Table 1 summarizes 
applications of radiative transfer theory to inhomo- 
geneous media relevant to the atmospheric science 
community from 1975 to 1992. In almost all the ex- 

amples cited in the table, the cloudy medium is as- 
sumed periodic with no horizontal boundary condi- 
tions imposed. 

3. Spectral approach to radiative transfer 

In order to address the issues presented in section 1, 
a general spectral formulation of the radiative transfer 
problem is developed for media embedded in three- 
dimensional space. Such a formulation is convenient 
as it provides a launch point for spectral approaches 
to one- and two-dimensional radiative transfer. In par- 
ticular, it is conjectured that two-dimensional radiative 
transfer studies can address the aforementioned issues 
if the medium possesses arbitrary vertical and hori- 
zontal spatial variability. It is asserted that all of the 
numerical and interpretational difficulties associated 
with three-dimensional radiative transfer are encoun- 
tered with radiative transfer in media embedded in two 
dimensions. This notion, pursued here, not only leads 
to economy in computation, but also lends itself easily 
to mathematical analysis and physical interpretation. 

A prerequisite necessary for the development of the 
Fourier-Riccati radiative transfer model is the Fourier 
decomposition of the equation of transfer given in Ste- 
phens ( 1988). Only the final result for the three-di- 
mensional RTE is given here: 

where Pm is the mth Legendre component of the phase 
function expansion, Ntt( z, +po) the Fourier compo- 
nent ofthe direct beam, Qzf( z, +pk) an internal source 
function, and 6u = u - u’, 6v = v - v’. The quantities 
X ‘,/“( m, m’) and Y :I”( m, m’) are related to the azi- 
muthal coupling terms D(m, m’), E(m, m’), F(m, 
m’), and G( m, m’), obtained by integrating the RTE 

uG(m, m’) 
CSm, m’) = 2L , 

x 

yi(m, m’) = VF(2mi m’). (2) 
J 

with respect to 6 and defined in Stephens ( 1988). The 
designators c/s refer to the cosine and sine components 
of the radiance amplitudes, respectively, associated with 

This linear system of ordinary differential equations 

the Fourier expansion of the total radiance. The mod- 
given in ( 1) along with the Fourier transformed 

ified coup1 ing terms are defined as 
boundary conditions constitutes a two-point boundary 
value problem ( BVP) . One difference between the BVP 

XXm, m’) = 
uD(m, ml) developed here and that of Stephens ( 1986, 1988) is 

2L , 
X 

the explicit inclusion of the source terms. Whereas Ste- 

vE(m, m’) 
phens constrains the solar zenith angle to one of the 

YtXm,m’>= 2L 
quadrature angles, the solar zenith angle in this for- 

, 
): mulation is arbitrary, as it is also in Kobayashi ( 199 1). 
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a. The Riccati transformation layer can be automatically computed. In practice, it 
has been observed that for vertically inhomogeneous, 

The system of ordinary differential equations given optically thick clouds embedded in two dimensions, 
by ( 1) is an example of a local formulation of radiative combinations of doubling and adding can take signif- 
transfer, and has been solved for the radiances as a icantly more time (twice as long in some cases) to 
BVP via several techniques as shown in Table 1. By compute than solving the differential equations for R 
comparison, global formulations of interest here do and T when step size selection is deduced from stability 
not involve the radiances directly. Instead, the central 
concept is that of radiative responses of the optical me- 

considerations alone. Furthermore, the addi ng and 
doubling computation had to be performed several 

dium to a distribution of source functions. These re- times to ascertain whether convergence in the solution 
sponses are defined by the reflection and transmission had been attained. Even for plane-parallel geometry, 
operators designated by R and T, respectively. adding and doubling for vertically inhomogeneous, 

One reason for developing a response function for- thick media is computationally less efficient than other 
mulation is that R and T are calculated from a nu- methods, such as the discrete ordinates method of 
merically stable, parallel algorithm. In addition, the Stamnes et al. ( 1988) (e.g., the well-known, heavily 
response functions are independent of the boundary used DisORT radiation code). 
conditions as will be demonstrated. This means that a Mathematical simplification is attained by trans- 
change in the boundary conditions will not require a 
recalculation of these operators. Another reason for 
pursuing such an approach is that its rich physical and 
mathematical content allows for useful interpretations 
associated with the transfer process not easily accessible 
using other methods. 

The radiative response operators can also be calcu- 
lated by the doubling and adding method developed 
by Grant and Hunt ( 1969) and van de Hulst ( 1965). 

forming the partial differential equation of radiative 
transfer into an ordinary integro-differential equation 
depending only on the vertical depth z. Hence, the first 
step in realizing a response function formulation is the 
transformation of the horizontal gradients of the ra- 
diance to algebraic terms, accomplished in Eq. ( 1). 

The transformation of ( 1) into an initial value prob- 
lem (IVP) proceeds in two stages. First ( 1) is recast in 
matrix form as 

In those formulations, the composition relations for dN’ 
the reflection and transmission operators are developed + ~ = -tN’ + rNS + Q’, 

- dz 
(3) 

for plane-parallel clouds of finite optical depth. Diner 
and Martonchik ( 1985) using the interaction principle where N’ and Q* are the radiances and source func- 
developed adding and doubling relations to calculate tions in the positive (+) and negative (-) hemispheres 
three-dimensional radiative transfer in periodic inho- (see also Fig. 1). Next, the interaction principle graph- 
mogeneous media bounded below by a surface with ically illustrated in Fig. 1 is applied. The radiances and 
general reflection properties. Stephens ( 1986) in an in- the global response operators can now be written as 

- * * dependent work formulated a doubling relation used 
to determine radiances in vertically uniform media N+(z) = R(z, b)N-(z) + T(b, z)N+(b) + t(b, z) 

embedded in two-dimensional spaces. 
If there is vertical variation in the extinction and 

N-(z) = R(z, O)N+(z) + T(0, z)N-(0) + ~(0, z), 

scattering functions, then it becomes necessary to slice (4) 

the cloud into slabs that are approximately internally where the term c accounts for the internal or external 
vertically uniform, calculate the reflection and trans- sources. Inserting these relations into equations (3) 
mission functions via doubling for each slab, and then yields 
repeatedly use adding formulas to determine the global 
radiative responses of the entire cloud. In this kind of dR(z, b) 

a situation, the optimal division of the medium into dz 
- R(z, b)rR(z, b) 

uniform layers is a trial and error process. 
A differential formulation for R and T would cir- 

+ R(z, b)t + tR(z, b) - r = 0 

cumvent this inconvenience (however, the issue of 
choosing the correct number of quadrature points, azi- 
muthal modes, and spatial discretization will always 

dT(b, z) 

dz 
+ R(z, b)rT(b, Z) + tT( b, Z) = 0 

exist), particularly when the cloudy medium is thick do, z) 
and exhibits rapid vertical spatial fluctuations. In this dz 

- R( Z, b)rr( b, Z) - R(z, b)N! 

case an analysis of the equations could provide infor- 
mation relevant to step size selection. Better still, the + k(z, b) - No+ = 0 

differential equation solver could incorporate adaptive 
step size control (e.g., Press et al. 1988). Employing 

dR ( z, 0) 

dz 
+ R(z, O)rR(z, 0) 

such a strategy is more efficient than trial and error 
since the number of layers and the thickness of each - R(z, 0)t - tR(z, 0) + r = 0 
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/ 

N-(O) 

/ 
0 

N*(z) 

2 

N+(b) 

FIG. 1. Schematic representation of the interaction principle. A 
layer extending from z = 0 to ; = h is divided at 2. The reflection 
operator is R( 5, h). Transmission operator T(0, z’). Pseudosource 
term t(h, z). Suppressing the angular dependence, the radiance in 
the positive hemisphere at horizontal position coordinate J is 

N+(s, 2) = R(s, s’, z, h)N-(s’, z) 

+ T(s, s’, b, i)N+(s’, h) + t(h, z). 

The radiance in the negative hemisphere is 

lv(s, z) = R(s, s’, z, O)N+(s’, z) 

+ T(s, s’, 0, z)W(s’, 0) + t(0, z). 

The reflection, transmission operators, as well as the pseudosource 
function are in general path dependent. The reflection and trans- 
mission operators contain two coordinates, s and s’, in their argument 
because of the convolution between the extinction and radiance in 
the Fourier domain asserted by Eq. ( 1). 

dT(O, -8 
dz 

+ R(z, O)rT(O, Z) - tT(0, Z) = 0 

d+, 0) 
dz 

+ R(z, O)rc(O, Z) 

+ R(z, b)No, - te(z, 6) + N! = 0. (5) 

These six equations suffice to calculate the emerging 
radiances at the cloud boundaries or at any interior 
point within a cloud. The terms N! and N’$ are the 
radiances associated with single scattering in the lower 
and upper hemispheres. The first and fourth of the set 
of equations in ( 5 ) is known as the Riccati matrix dif- 
ferential equation (RMDE). Examples of IVPs, these 
equations have been studied in a more general form 
given by 

dWz, b) 
dz 

- K(z, b)AK(z, b) - K(z, b)B 

- CK(z, b) - D = 0. (6) 

The RMDE plays a central role in many diverse fields 
such as control theory (Barnett 1984), neutron trans- 
port ( Bellman 1970)) and plasma physics. It also enters 
in the theory of Backlund transformations, used for 
solving for nonlinear partial differential equations. An 
analysis of its solutions using nonlinear superposition 

principles has been given by Harnad et al. ( 1983) and 
Rand and Winternitz ( 1984). 

Returning to (5 ), the initial conditions required for 
its solution are 

R (z = 0,O) = 0 R (z = b, b) = 0 

7’(2 = 0,O) = 1 T(z = b, b) = 0 

t (Z = 0: 0) = 0 t (z = b, b) = 0. (7) 

A cloud of zero optical thickness and a perfectly ab- 
sorbing ground can have no diffusely reflected com- 
ponent, and any incident diffuse radiation is trans- 
mitted without attenuation or scattering. Hence, R (0, 
z = 0) = 0 and T (0, z = 0) = 1, respectively. The 
condition t (0, z = 0) = 0 states that in the absence of 
sources, there is no diffuse radiation. Six equations are 
required to specify the response functions of the me- 
dium because the integrals defining R, T, and t are 
path dependent: integration from z = 0 to z = b yields 
response functions differing from those obtained by 
integrating from z = b to 0. If the internal radiances 
are also required, then (4) may be solved for N-(z) 
and A;‘( Z) . The results are 

N+(z) = (I - R(z, b)R(z, O))p’ 

x [ T(b, z)N+(b) + R(z, b)T(O, z)N-(0) 

+ R(z, b)t(O, z) + c(b, z)] 

h’-(z) = (I - R(z, O)R(z, b))-’ 

x [ T(0, z)N-(0) + R(z, O)T(b, z)N+(b) 

+ R(z, O)e(b, z) + ~(0, z)]. (8) 

According to Bellman ( 1970)) Eqs. ( 5 ) are associated 
with the following picture: r can be identified with a 
single backscattering, tR corresponds to reflection fol- 
lowed by forward scattering, Rt corresponds to forward 
scattering followed by a reflection, and RrR corresponds 
to reflection, backscattering, and then reflection again. 

These interpretations were originally applied to the 
RMDE describing particle propagation in a one-di- 
mensional rod and extended to plane-parallel atmo- 
spheres described by Wing ( 1962). The scattering pro- 
cesses described above were formulated in physical 
space, whereas the RMDE of interest here is associated 
with two-dimensional radiative transfer formulated in 
the frequency domain. The response matrices are 
complex operators that depend on zc, u’, p, p’, m, m’, 
and Z. They operate on the diffuse incident radiances 
[i.e., the Fourier transformed boundary conditions 
N-(O) and N+(b), which are functions of u’, p’, and 
m’] resulting in radiances that depend on II, p, and m. 
Because the operators R and T are generally full ma- 
trices, the spatial (and angular) coupling of the radiance 
to the cloudy medium can be long range and strong. 

This contrasts with plane-parallel atmospheres where 
there is no horizontal scale dependence: the extinction 
and scattering functions are constants. Fourier trans- 
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forms of these functions are delta distributions. Hence. 
the convolution required by ( 1) decouples in 11. and 
in azimuth ~27, since there is contribution only by the 
domain average component u = 0. This result has 
bearing on themdependent pixel approximation, since 
the local application of plane-parallel calculations ne- 
gates the possibility of scale coupling. 

b. Radiative transjtir in thc.frequencv 
Connection M*ith other methods 

domain: 

By reformulating the equation of transfer as a 
boundary value problem in one dimension, all the for- 
malism and computational techniques that describe 
scattering in plane-parallel media carry over to the 
horizontally inhomogeneous case. In addition, the de- 
velopments here are intimately tied to issues concern- 
ing existence and stability of the RMDE, pursued in 
the Appendix. Finally, the results presented here as- 
sociate scattering as a filtering operation in the fre- 
quency domain and lead to a computational technique 
for determining the radiance field at any point within 
the cloudy medium (Flatau and Stephens 1990). 

Beginning with Eqs. (3), two new sets of radiances 
are defined: 

where &z) is a vector of radiances emerging at vertical 
position z inside the medium, and &z) is the single- 
scattering source vector. By defining the system matrix 
A(z) as 

A(z) = 

Eq. (3) can be written as 

d&z) ----X 
dz 

A(z)&z) + tic(z). 

The homogeneous solution to this equation, 

9 = Am, (12) 

can be explicitly represented in component form as 

Hz) = 

h(z, 0) 412k b) 

42dz,O> 
(13) 

and the complete solution to this problem can be for- 
mally written as 

x B - M,@(b) s” @( t)-‘Rc( t)dt 
0 11 

where 

Mu = and Md = 

In the case of a vertically uniform, horizontally in- 
homogeneous cloud, the solution of ( 12 ), known as 
the propagator, is 4( z) = exp( Az) . If the cloudy me- 
dium is vertically nonuniform, then it can be sliced 
into thin slabs such that within each slab the propagator 
is constant. Then, the propagator for the entire medium 
can be written as a product of individual propagators 
(Gantmacher 1959; Gilbert and Backus 1966; Karp et 
al. 1980) corresponding to each of the slabs, paying 
attention to vertical ordering of the slabs since the 
propagators in general will not commute: 

(15) 

Since the boundary conditions are specified, it is pos- 
sible to use ( 14) and ( 15) to determine the radiation 
at all k levels. All of the aforementioned calculations 
are performed in the frequency domain, and the ra- 
diances in the spatial domain are-recovered by taking 
the inverse Fourier transform of K(z). 

The notion that multiple scattering acts to smooth 
the radiation field even though the cloud field can be 
extremely inhomogeneous can now be addressed. From 
a purely mathematical point of view, the radiance vec- 
tor must generally be smoother than A or RC because 
if these functions have m derivatives, Nz) must have 
m + 1 derivatives as seen from ( 11). More physically, 
the propagator contains information about the optical 
properties of the medium (assumed here to be vertically 
uniform) as well as azimuthal and angular information. 

The propagator does not of itself constitute a solution 
to the radiative transfer equation unless boundary 
conditions are imposed. Furthermore, because the 
propagator depends on the dzfirence between spatial 
coordinates [e.g., Eq. ( 14)], it has the effect of weight- 
ing the single scattering source function by the same 
amount everywhere inside the medium. This convo- 
lution diminishes-the magnitudes of all high-frequency 
components in x,(z). In physical space this corre- 
sponds to a smoothing of the radiances by the small- 
scale structures of the cloud field. 

4. Solution procedures 

The formulation of a Fourier-Riccati approach to 
solving the equation of transfer has proceeded in two 
steps: transformation of the general equation of transfer 
into a one-dimensional two-point BVP in Fourier 
space, followed by subsequent transformation to an 
IVP via the interaction principle. The first step was 
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performed because linear ordinary differential equa- 
tions are more amenable to analyses than partial dif- 
ferential equations. The second step develops the Ric- 
cati method, which dissociates the radiation field from 
the optical properties of the medium. The emerging 
radiation field is the response of global transmission 
and reflection operators to prescribed boundary con- 
ditions. These operators are independent of the 
boundary conditions and can be calculated by numer- 
ical procedures commonly used in plane-parallel 
theory. 

The structure of the local reflection and transmission 
operators (matrices) associated with media embedded 
in two- and three-dimensional spaces differ substan- 
tially from their plane-parallel counterpart due to the 
presence of the horizontal gradient terms. In addition, 
plane-parallel theory, generally formulated in physical 
space, is not encumbered with complex quantities. Al- 
though techniques for solving plane-parallel atmo- 
spheres are applicable here, their use is not necessarily 
optimum from a numerical standpoint for the inho- 
mogeneous case. The numerical solution of ( 5 ) as well 
as the efficiency of the algorithm used to obtain nu- 
merical results will now be discussed. Details concern- 
ing the uniqueness and stability of the Fourier-Riccati 
method are addressed in the Appendix. 

a. Numerical considerations 

The system of nonlinear matrix differential equa- 
tions ( 5 ) has been successfully integrated using a fourth- 
order Runge-Kutta solver with a high degree of ac- 
curacy as will be seen in two dimensions. The accuracy 
of the radiance and flux fields depends crucially on a 
number of factors: spatial sampling of the extinction 
and scattering functions, vertical step size selection, 
and quadrature scheme. Prior to performing any cal- 
culations, the spatial sampling frequency of the me- 
dium’s optical properties is determined by visually in- 
specting a surface plot of cy( u, z) and s( u, z), the Fou- 
rier transforms of the extinction and scattering 
functions, respectively. The sampling rate is selected 
for the function having the highest cutoff frequency 
[the frequency at cy( u, z) or s( u, z) are zero] at some 
value z = z’. This is to some extent a trial-and-error 
process and depends on the fidelity desired of the in- 
verse Fourier transform to reproduce the original 
function. The calculation of the Nyquist or sampling 
frequency that must be used to avoid aliasing follows: 
the function is sampled at twice the highest frequency 
present in the Fourier spectrum. It may happen that 
the spectrum is not band limited in the sense of there 
not being some highest cutoff frequency at which the 
transform of the function goes to zero. In that case it 
is necessary to band limit the function by appropriately 
filtering it and redoing the spectral analyses. This will 
introduce some bias in the radiation field, since the 
smallest scale structures present in the cloud are either 

removed or greatly attenuated. This bias may or may 
not be important depending on the intended applica- 
tion. 

One way of exploring the spatial sampling issue is 
by simulating a cloudy medium possessing different 
scales of variability. For purposes of this discussion, 
the vertically uniform extinction function: 

a(x) = 1 + -4 sin ’ . (y)+isin(F) (16) 

is considered (Fig. 2). The mean optical depth of such 
an extinction is unity and the phase function has been 
set to be isotropic. The smallest scale structure can be 
resolved by sampling this function at twice the highest 
spatial frequency according to the Nyquist theorem. 
The highest frequency is 1.75 km-‘. Therefore, the 
spatial sampling rate must be 3.5 km-’ or 285.7 m. 
This function was chosen since its energy density at 
the highest frequency ( 1.75 km-‘) is greater than that 
at (0.25 km-‘) by a factor of 4. 

It should be noted that such an extinction function 
can never be representative of any naturally occurring 
cloud since it states that there is more cloudy matter 
in shorter as opposed to longer space scales. While this 
function is at variance with spectral analyses of cloud 
liquid water content that suggest that clouds are scale 
invariant over a large range of spatial scales, it dra- 
matically highlights the effects of incorrect sampling 
rate, which is the intended purpose of this simple ex- 
ample. 

Two numerical experiments were performed. The 
first fixed the sampling rate at 250 m, the second at 
500 m. Sampling at 500-m resolution aliases the highest 
frequency component of ct$ x) . The results of these ex- 
periments, presented in Figs. 3a-d, point to a sensitivity 
of the radiances due to inadequate sampling that is not 
shared to the same extent by the fluxes. The largest 
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FIG. 2. Spatial variation of the extinction density used 
the effects of spatial sampling. The function plotted is 

C-V(~)= I +~sin(~)+~sinj~). 
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FIG. 3. (a) Upwelling radiances exiting the upper surface of a cloud whose extinction density 
is plotted in Fig. 2. The cloud was sampled at two different spatial resolutions, 250 m (clear cells) 
and 500 m (crosses). Radiances top to bottom are calculated for an observation angle of 58.7” 
and 16.2”. The solar zenith angle is 30”. Scattering is conservative with an isotropic phase function. 
Calculations were performed using 8 streams and 8 azimuthal components. (b) As in (a) but for 
downwelling radiances at the lower cloud boundary. (c) Upwelling fluxes exiting the upper surface 
of a cloud whose extinction density is plotted in Fig. 2. The cloud was sampled at two different 
spatial resolutions 250 m (clear cells) and 500 m (crosses). The solar zenith angle is 30”. Scattering 
is conservative with an isotropic phase function. (d) As in (c) but for downwelling fluxes at the 
lower cloud boundary. 

differences between the reflected radiances sampled at domain is replaced by the much more complex con- 
the aforementioned resolutions is about 18% (lower volution operation in the frequency domain. 
plot in Fig. 3a). For the transmitted radiances it is 11% Convolution, however, can be efficiently performed. 
(lower plot in Fig. 3b). The observing angle is 16.2”; Consider for example the external source term in the 
the incident solar irradiance is 30”. Both angles are frequency domain: 
measured with respect to a vertical in the first quadrant. ” ‘E I’ 
In the worst case, fluxes differ by about 5%. This is 
expected since flux, being the first angular moment of 

’ + 6c6m 2 
4 

‘y S(6U; z) 
“‘=-FJ ~(‘=-U 

the radiance, is smoother than the radiance. 
x m-tPk, PowY&(z, 70). (17) 

b. Treatment of the direct beam and eficiency 
considerations This convolution between the direct beam along a tra- 

jectory specified by p. with the scattering function s 
Once the spatial sampling frequency is calculated, can be efficiently and easily evaluated by taking the 

the circulant matrices a( 24, u’, z) and s( U, u’, z) are Fourier transform of the product: [ cu(x, z)N( z, -po)]. 
easily created. It is at this point where spectral methods This method was also used by Kobayashi ( 199 1). 
in general become numerically inefficient by compar- The criterion used to determine the vertical step size 
ison to direct approaches. The reason is that simple for the integration of ( 5) is based on a simple scale 
scalar multiplication of two functions in the spatial analysis of the A matrix [Equation ( lo)], that is, num- 
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ber of steps = maxll A[[ over the interval 0 < z d 6. 
The step size is determined by taking the inverse of the 
number of steps. While in practice this selection has 
always worked, in many cases it was possible to carry 
out the integration using large steps without encoun- 
tering a numerical explosion or significant loss of ac- 
curacy. Therefore, this criterion of step selection is too 
conservative. A solution here would be to incorporate 
a variable ‘step size algorithm in the Runge-Kutta sol- 
ver. The undesirable feature of a variable step algorithm 
is primarily associated with the interpolation procedure 
that would have to be employed in order for the internal 
radiance fields to be evaluated at some prescribed po- 
sition inside the medium after the R and T matrices 
have been calculated. Such an interpolation may com- 
promise the accuracy of the solution. Since the radi- 
ances in this paper are calculated only at the cloud 
boundaries, a variable step algorithm may increase the 
efficiency of the Runge-Kutta IVP solver, but that op- 
tion was not explored. 

To allow for the possibility of taking larger steps, a 
single-Gauss instead of a double-Gauss quadrature 
scheme was used. The former always yields a larger 
minimum value of pk over an angular interval than 
the latter, and the number of steps is inversely pro- 
portional to pk. This inverse relationship can cause the 
RMDE to become stiff and potentially expensive to 
solve. The expense is associated with the number of 
complex floating point operations per step. Most of the 
calculational cost is consumed by the RMDE, requiring 
four complex matrix multiplications per step. To min- 
imize this cost, a combination of different strategies 
was employed. First, it is noted that the calculation of 
the global transmission operator is not required if the 
radiation fields are to be calculated at the boundaries 
of the cloudy medium. Next, the sparsity of the r and 
t matrices is exploited in connection with the obser- 
vation that the Riccati equations can be factored. For 
example, 

dR(z, 0) 
dz 

= (-t + R(z, O)r)R(z, 0) 

-R(z,O)t+r=O. (18) 

The matrix multiplication R( z, 0)r is that of a full 
matrix by a sparse matrix as is R( z, 0) t. 

The term (-t + R(z, O)r)R(z, 0) is the product of 
two full matrices. Two effective ways of calculating the 
product are by exploiting the parallelism in matrix 
multiplication on a parallel computing machine (such 
as the Cray YMP) or algorithmically, using fast matrix 
multiply routines such as Winograd’s variation of 
Strassen’s algorithm. The latter is implemented in the 
BLAS library under the subroutine CGEMMS and falls 
in the class of “asymptotically fast algorithms.” This 
means that gain in speed is attained only for very large 
matrices. The complexity of the algorithm varies as 
N2.* instead of N3 associated with conventional mul- 

tiplication. Using this algorithm for the size of matrices 
in this study where N varied between 5 12 and 1024 
elements, yielded a speed increase of nearly a factor of 
four over the brute-force approach. This timing is sim- 
ilar to that using conventional matrix multiplication 
where the parallelization option of the compiler is en- 
gaged. For larger matrices, the algorithmic approach 
will prevail 

5. Discussion of numerical results 

In this section the implementation of the Fourier- 
Riccati model is tested by comparing numerical results 
to Monte Carlo simulations (O’Brien 199 1) and the 
spherical harmonic spatial grid (SHSG) method of 
Evans ( 1992) for several combinations of solar ge- 
ometry and optical properties of the medium. Beyond 
model verification, this section begins to explore the 
issue of how accurately radiances and fluxes may be 
calculated, given prescribed spatial discretization of the 
medium and prescribed angular resolution of the phase 
function. In view of the great usage of plane-parallel 
calculations, in particular of the so-called independent 
pixel approximation, numerical comparisons of radi- 
ances and fluxes between the one- and two-dimensional 
radiative transfer models is also included and discussed. 

In order to establish the correct working of the Fou- 
rier-Riccati model, the following cases were examined: 
isotropic conservative and nonconservative scattering 
with Gaussian extinction and scattering functions, 
conservative and nonconservative scattering with 
asymmetric Henyey-Greenstien phase functions. and 
asymmetrical raised sine function defining the extinc- 
tion and scattering. In all cases the medium was illu- 
minated obliquely at a solar zenith angle of 30” and 
the vertical variation of the medium was linear. The 
choice of extinction and scattering functions was dic- 
tated by spatial symmetry/asymmetry considerations. 
Unlike the implementation of Stephens ( 1986) that 
could accommodate only even extinction and scatter- 
ing functions, this formulation allows for combinations 
of either. 

a. Radiance andjlux distributions 

Figures 4a and 4b offer comparisons of the emerging 
radiances calculated at the boundaries of a cloudy at- 
mosphere using the Fourier-Riccati model to those 
obtained via Monte Carlo and SHSG using an eight- 
stream approximation of the phase function and eight 
azimuthal modes. Figures 4c and 4d show correspond- 
ing flux comparisons. It is observed that the upwelling 
radiances are more accurately calculated than the 
downwelling radiances at low observation angles. As 
the viewing angle approaches nadir, the radiances are 
computed much more accurately. Fluxes by compar- 
ison are in relatively good agreement with the other 
methods. This is because integration of the radiances 
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plane-parallel theory, more quadrature points and azi- 
muthal angles would be required to represent these 
radiances. To test this idea, the model was run again, 
this time with an “inverted” optical density function 
that had a minimum at the top boundary of the cloud. 
The extinction function used was (z) exp( - TX*) in- 
stead of ( I - z) exp( -TX*). In accordance with ex- 
pectations. the downwelling radiances and fluxes were 
more accurately calculated than those emerging at the 
upper boundary. 

A more demanding test of the Fourier-Riccati model 
is its requirement of accommodating nonsymmetric 
optical properties and nonisotropic phase functions. A 
harmonically varying cloud 

a(x, z) = 2( 1 - z)( 1 + sin(0.57rx), 

s(x, z) = a(x, z) 

and a Henyey-Greenstien phase function with g = 0.5 
was introduced to determine the model’s performance. 
Figures 5a and 5b compare the radiances exiting the 
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FIG. 5. (a) Comparison of upwelling radiances calculated by the Fourier-Riccati model (solid 
line corresponds to 8 streams and 8 azimuthal components) to those calculated by the spherical 
harmonic spatial grid method (dotted line) (Evans 1992) and accelerated Monte Carlo method 
(fine dashed lined) (O’Brien 1992 ) . Cloud extinction density is given by cy( x, z) = 2 ( 1 - z)( 1 
+ sin( .57rx)). Scattering is conservative (s(x, Z) = a(x, z)) with Henyey-Greenstein phase 
function (g = .5). The solar zenith angle is 30”. Top to bottom, the observation angles are 79.6”, 
58.7”, and 16.2”. Radiances are calculated at upper cloud boundary. (b) As in (a) but for down- 
welling radiances at the lower cloud boundary. (c) Comparison of upwelling fluxes calculated by 
the Fourier-Riccati model (solid line corresponds to 8 streams and 8 azimuthal components) to 
those calculated by the spherical harmonic spatial grid method (dotted line) (Evans 1992) and 
accelerated Monte Carlo method (fine dashed line) (O’Brien 1992 ). Fluxes are calculated at 
upper cloud boundary. Cloud optical properties and illumination geometry as in (a). (d) As in 
(c) but for downwelling fluxes at the lower cloud boundary. 
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boundaries of this cloudy medium calculated by the 
Fourier-Riccati and the SHSG methods. Figures 5c 
and 5d illustrate the corresponding flux comparisons. 
Excluding the lowest angle of observation (79.4”), ra- 
diances differ by 3%, fluxes within 0.5% (worst case 
figures). 

One observation concerning the flux is the high an- 
gular resolution that is required to represent it. Unlike 
plane-parallel theory where two streams can yield flux 
calculations to high accuracy, scattering in an inho- 
mogeneous medium seems to preclude such a simpli- 
fication. To see this, consider Figs. 6a and 6b. Devia- 
tions of the fluxes from either the Monte Carlo or 
SHSG benchmarks are attributed to inaccuracies in 
the radiances. Since the flux is derived from the first 
angular moment of the radiance field, large deviations 
in the latter will result in errors in the fluxes. The large 
discrepancies observed, first thought to be a program- 
ming fault, are actually a phenomenon induced by 
weak spatio-angular coupling of the radiance to the 
cloudy medium by the XC,( m, m’) terms. 

To understand what is meant by such a coupling, 
consider the case of scattering by an isotropic phase 
function in a plane-parallel layer. Only the m = 0 com- 
ponent suffices to calculate either the radiances or 
fluxes. Radiances are accurately calculated by using 
more streams, but again only the m = 0 azimuthal 
component contributes. This contrasts with two-di- 
mensional radiative transfer where the quadrature an- 
gles and spatial components mix in the XC, matrix (in 
the plane-parallel mode of the Fourier-Riccati model, 
only the u = 0 component is sufficient to calculate 
radiances; therefore the X’, matrix is zero). It is this 
mixing that gives rise to an azimuthally asymmetrical 
radiance distribution. Hence, even though all the phase 
matrix elements associated with m > 0 are equal to 
zero, a large number of azimuthal modes may be re- 
quired because that particular mode is coupled to 
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higher-order modes. This may require a large number 
of angular quadrature components to ensure appro- 
priate representation or sampling of the radiances prior 
to their integration to obtain fluxes. 

The number of possible azimuthal modes is related 
to the number of quadrature angles via the addition 
theorem for spherical harmonics. Also noted is the fact 
that while the total flux exiting the cloud boundaries 
conserves energy to high accuracy, the spatial flux dis- 
tributions can be in gross error. This is because energy 
conservation, the result of phase function normaliza- 
tion (and conservative scattering), is by itself insuffi- 
cient to ensure convergence. 

6. The independent pixel approximation 

Two features evident from an examination of Figs. 
4a and 4b are the asymmetry of the radiances and fluxes 
even when the medium is spatially symmetric and the 
position of the maximum radiance in relation to the 
position of the maximum extinction density. These 
features are unique to radiative transfer performed in 
two or three dimensions and are not reproducible by 
plane-parallel calculations. This is confirmed by Figs. 
7a-d and 8a-d, which compare the radiances and fluxes 
exiting the cloud boundaries calculated by the inde- 
pendent pixel approximation and the Fourier-Riccati 
model. It is seen that the plane-parallel radiances and 
fluxes compare poorly. Radiances computed by the in- 
dependent pixel approximation have the wrong shape 
and are, in the case of the Gaussian cloud, symmetric. 
Fluxes are also in disagreement with those calculated 
by the Fourier-Riccati method. These large differences 
are the result of light exiting from the sides of the clouds 
and have no equivalent in plane-parallel theory. As an 
aid to visualizing the relationship of the radiance fields 
to the optical properties of the medium, Figs. 9a and 
9b are presented. Figure 9a relates the radiance field 
to a Gaussian extinction function, whereas Fig. 9b re- 
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FIG. 6. (a) Comparison of upwelling fluxes calculated by the Fourier-Riccati model (solid diamonds corresponds 
to 10 streams and 10 azimuthal components, clear circles correspond to 8 streams and 8 azimuthal modes, crosses 
correspond to 4 streams and 4 azimuthal modes) to those calculated by the Spherical Harmonic Spatial Grid method 
(clear diamonds-not visible in the figure) (Evans 1992) and accelerated Monte Carlo method (dots-not visible in 
the figure) (O’Brien 1992). Cloud optical properties and illumination geometry as in Fig. 4a. Panel (b) As in (a) but 
for downwelling fluxes at lower cloud boundary. 
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FIG. 7. (a) Comparison of upwelling radiances calculated by the Fourier-Riccati model (solid 
line corresponds to 8 streams and 8 azimuthal components) to those calculated by the independent 
pixel approximation (dots). Cloud optical properties and illumination angle are as in Fig. 4a. 
Top to bottom, the observation angles are 58.7” and 16.2”. Radiances are calculated at upper 
cloud boundary. (b) As in (a) but for downwelling radiances at lower cloud boundary. (c) Com- 
parison of upwelling fluxes calculated by the Fourier-Riccati model (solid line corresponds to 8 
streams and 8 azimuthal components) to those calculated by the independent pixel approximation 
(dots). Cloud optical properties and illumination angle are as in Fig. 4a. (d) As in (c) but for 
downwelling radiances at lower cloud boundary. 

lates the radiance field to a harmonically varying ex- 
tinction. In these figures gray levels represent densities 
of the extinction function. The magnitudes and direc- 
tions of the radiances are represented by the lengths 
and angles of the lines drawn at the cloud boundaries. 

c. Spatially averaged properties 

A common practice in remote sensing applications 
is to approximate the domain averaged radiances by a 
plane-parallel layer having a mean optical thickness 
equal to that of an inhomogeneous cloud in situ. The 
attempt here is to gain information about the optical 
properties of the cloud (e.g., its phase function) by 
examining the angular distribution of the reflected ra- 
diances. To test this idea, the domain-averaged reflected 
radiances have been compared to those calculated by 
a plane-parallel model at the same observation angles. 
The results of these comparisons are presented in Figs. 
1Oa and lob. It is seen that differences in the worst 

VOL. 50, No. 18 

case (at 58.7”) are about 25%, while at other angles 
the agreement is better. Caution should be exercised 
when interpreting these results, however. In practice, 
the differences may be much larger because natural 
clouds possess much greater variability than those 
studied here. 

6. Conclusions 

A method for solving the RTE for inhomogeneous 
media embedded in two and three dimensions has been 
developed based on the idea of eliminating the hori- 
zontal radiation advection terms by Fourier decom- 
position of the radiance fields. The resulting one-di- 
mensional ordinary differential equation, a two-point 
BVP, is converted to an IVP by the principle of inter- 
action. This procedure leads to a complex nonlinear 
system that defines the global reflection and transmis- 
sion operators. These operators are independent of the 
boundary conditions and directly show the importance 
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FIG. 8. (a) Comparison of upwelling radiances calculated by the Fourier-Riccati model (solid 
line corresponds to 8 streams and 8 azimuthal components) to those calculated by the independent 
pixel approximation (dots). Cloud optical properties and illumination angle are as in Fig. 5a. 
Top to bottom. the observation angles are 58.7” and 16.2”. Radiances are calculated at upper 
cloud boundary. (b) As in (a) but for downwelling radiances at lower cloud boundary. This figure 
as well as Figs. 7a and 7b show that the independent pixel approximation yields better agreement 
in the radiances as compared to those calculated by the Fourier-Riccati method (or, for that 
matter, the SHSG or accelerated Monte Carlo methods) provided that the emerging radiances 
are observed at nadir or at zenith. This suggests that if the vertically integrated optical thickness 
of a cloud and the solar zenith angle are known, measurements of the radiance at the external 
cloud boundaries taken at nadir or zenith will best agree with radiances calculated by plane 
parallel theory. However, the fluxes can still be in great error, as the figures illustrate. (c) Comparison 
of upwelling fluxes calculated by the Fourier-Riccati model (solid line corresponds to 8 streams 
and 8 azimuthal components) to those calculated by the independent pixel approximation (dots). 
Cloud optical properties and illumination angle are as in Fig. 5a. Radiances are calculated at 
upper cloud boundary. (d) As in (c) but for downwelling radiances at lower cloud boundary. 

of scale dependence of the radiance fields. The method 
was implemented in order to explore several issues: 
how the accuracy of the calculated radiance and flux 
fields is affected by angular and spatial resolution and 
the extent of validity of employing the individual pixel 
approximation. 

The implementation was tested by comparing nu- 
merical results with Monte Carlo and spherical har- 
monic spatial grid methods for various combinations 
of solar geometry and optical properties of the cloudy 
medium. In all cases the flux distributions exiting the 
cloud boundaries were in excellent agreement. Radi- 
ance distributions also agreed well, except those asso- 
ciated with the lowest angle of observation. 

Although the models used to simulate the extinction, 
scattering, and phase functions are unrealistic (serving 
only to assist in the interpretation of the diffuse radia- 
tion fields they create), some useful and interesting 
results were obtained that may remain applicable in 
calculations involving much more inhomogeneous 
cloud structures and more realistic phase functions. 
For the cloudy media studied in this paper, the main 
conclusions are as follows. 

1) The spatial flux distribution required a relatively 
large number of quadrature and azimuthal points (8 
or more) for its accurate calculation using an isotropic 
phase function. Just as many quadrature and azimuthal 
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FIG. 9a. This image relates cloud extinction density to the cloud radiances exiting at the cloud boundaries. The 
length and direction of the processes emerging from the cloud are intended to illustrate the relative magnitudes of the 
radiances. The source (not shown) is located on the top right-hand side of the image, inclined 30” relative to a vertical 
axis. The extinction function and optical properties of the medium are as specified in Fig. 4a. The image shows that 
the greatest magnitude of the radiance does not occur at the point where the vertical optical thickness is greatest (in 
this case T,,, = 1 .O at the origin), as would be predicted by the independent pixel approximation. Furthermore, the 
radiances are asymmetrically distributed. The independent pixel approximation would produce a symmetrical radiance 
and flux distribution. 

points were required to calculate the spatial radiance 
distributions accurately. This result is not an artifact 
of the Fourier-Riccati model; the same effect was also 
observed using the spherical harmonic spatial grid 
method of Evans ( 1992) using the same media and 
imposing identical boundary conditions. The extent of 
validity of these observations is presently unknown. If 
generally true, they would preclude the possibility of 
calculating fluxes by approximating the RTE as a two- 
stream model as can be done for plane-parallel clouds. 

2) The problem with a highly forward-peaked phase 
function, as is well known, is the large number of azi- 
muthal components necessary for its spherical har- 
monic representation. This problem persists in radia- 
tion calculations performed in media embedded in two- 
or three-dimensional space. Radiative transfer in two 
or three dimensions is more complex than in plane- 
parallel atmospheres because horizontal derivatives of 
the radiances tightly couple spatial and angular infor- 
mation in the transfer equations. This coupling can 
yield an erroneous spatial flux distribution even though 
energy is conserved over the spatial domain of the 
cloud. If the spatial sampling of the cloud is correct, 
then increasing the (Gaussian) quadrature points, the 
number of azimuth modes, or both can substantially 

reduce the error. For a strongly forward-peaked phase 
function, a large number of quadrature angles and azi- 
muthal modes would be required, resulting in ex- 
tremely long computation times. 

3) The effects of spatial sampling of optical prop- 
erties of clouds appear to affect radiance calculations 
more adversely than fluxes. For the example studied 
in section 4, radiances calculated for aliased clouds dif- 
fered from their correctly sampled counterparts by as 
much as 18%, whereas fluxes differed by only 5%. The 
sampling issue is relevant to remote sensing applica- 
tions where inferences regarding cloud optical prop- 
erties such as optical thickness or even phase functions 
are required. In such situations errors in the radiance 
fields may introduce large errors in the sought quan- 
tities in view of the nonlinear relation between the 
cloud and its radiative response. 

4) The independent pixel approximation has not 
been found to be accurate using the clouds modeled 
in this paper. Spatial radiance and flux distributions 
in the visible and near-infrared portion of the solar 
spectrum calculated by this approximation differ in 
shape and in magnitude from those calculated using 
two-dimensional radiative transfer. Since scale coupling 
is inhibited in “pixels,” in reality areas associated with 
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FIG. 9b. This image relates cloud extinction density to the cloud radiances exiting at the cloud boundaries. The 
length and direction of the processes emerging from the cloud are intended to illustrate the relative magnitudes of the 
radiances. The source (not shown) is located on the top right-hand side of the image, inclined 30” relative to a vertical 
axis. The extinction function and optical properties of the medium are as specified in Fig. 5a. The image shows that 
the radiance is not zero where the vertical optical thickness is minimum (in this case 7,,,,” = 0.0 at x = - 1 .O), as would 
be predicted by the independent pixel approximation. This is because of the reflection of the incident irradiance by 
the walls of the cloud. Thus, even when absorption is high (o = 0.9), the effects of cloud structure can still be important. 

some assumed fixed scale, then energy balance calcu- This study has been intentionally limited to clouds 
lations founded on such an assumption can have large of modest internal variability in order to acquire some 
errors whose magnitudes cannot be estimated. understanding of the effects exerted by cloud structure 
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FIG. 10a. Domain-averaged radiances exiting the top boundaries of a cloud having extinction density, optical properties, and angle of 
illumination as given by Fig. 4a. The domain-averaged radiance is compared to that obtained by using the mean optical depth, in this case 
(7) = 0.25 in a plane-parallel calculation employing the same phase function, illumination angle, and quadrature points. (b) Domain- 
averaged radiances exiting the top boundaries of a cloud having extinction density optical properties and angle of illumination as given by 
Fig. 5a. The domain-averaged radiance is compared to that obtained by using the mean optical depth, in this case (7) = 1.00 in a plane- 
parallel calculation employing the same phase function, illumination angle, and quadrature points. 
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on the emerging radiation fields. The extremely differ- 
ent radiation fields associated with the different cloud 
structures as calculated in this study point to a need 
for a different way of thinking about the cloud radiation 
problem. The different cloud distributions used in this 
work can be thought of as instances or realizations 
generated by some probabilistic process. 

The great spatial and temporal variability that char- 
acterizes naturally occurring clouds suggests that, at 
least for climatological studies, a stochastic approach 
to the radiation problem be pursued. In such a frame- 
work, the question is not what is the (deterministic) 
radiance or flux field given an extinction or scattering 
function but, rather, what are the statistical moments 
of the radiances and fluxes given the probabilistic pro- 
cess that generates extinction and scattering distribu- 
tions. This kind of an approach has the virtue of char- 
acterizing uncertainties in the radiation field produced 
by cloud fluctuations, as well as fusing in situ obser- 
vations of clouds with stochastic cloud modeling. 

Acknowledgments. This work was supported by the 
Department of Energy (DE-FG02-90ER6 1067 and 
DE-A 105-90ER6 1069 ), Brookhaven National Labo- 
ratories (466535)) and the Office of Naval Research 
(NO00 14-9 1 -J- 1422, POOO02). One of us (SCT) wishes 
to thank Dr. W. J. Wiscombe at NASA Goddard Space 
Flight Center for his support of this project. We also 
thank Drs. F. Evans and P. Flatau for useful discussions 
as well as the constructive criticisms of the reviewers. 
Computer calculations were carried out at Lawrence 
Livermore Laboratories, NCAR, and GSFC. 

APPENDIX 

Properties of the Fourier-Riccati Method 

Whereas a common feature of solving most BVPs 
is to first discretize and then possibly transform the 
discrete system to resolve stability issues, the method 
described here first transforms ordinary differential 
equations (ODES) and then performs a discretization. 
The hope is that the transformed system of ODES is 
such that the IVPs are stable (a system is called stable 
is small changes in the input data produce small 
changes in the solution) and hence can be efficiently 
integrated. However, before discussing the numerical 
solution of ( 5)) it is useful to know under what con- 
ditions those equations actually yield a solution of the 
two-point BVP represented by ( 1). It is also desirable 
to link the particular Riccati formulation used in this 
paper with established Riccati methods used to solve 
ODES. 

a. Solutions of the Fourier-Riccati Method 

The issue of solutions can be add_ressed via the su- 
perposition principle. The solution K(z) for the radi- 
ances at any point z can be expressed as a linear com- 

bination of the fundamental solution matrix 4. de- 
scribed by ( lo), and the particular solution v( 2): 

(AU 
where v’(z) and v-(z) are components of the radiance 
vector v(r) identified with the solution to the initial 
value problem 

dv(z) 
dz 

= A(z)v(z) + k(z) 642) 

whose initial conditions are to be determined. The sys- 
tern transfer matrix, A( z), is given in ( lo), and vector 
&(z), the vector describing the source function, 

by (9). 
The boundary conditions s’ and s- are obtained by 

inverting (A 1) to obtain 

s- = 422h b)-‘N-(z) - 622k W@ZI(Z, w+ 

- 422h WV-W 

S + = dhl(Z, O)-‘N+(z) - 41&b W’412k ws- 

- h(z, W’v+W (A3) 

Substituting these equations into (A 1) yields 

N+(z) 

= 412k @422(z, W’N-(4 

+ b#hl(~, 0) - 412(z, W22k W%2I(Z, ws+ 

+ v+(z) - 412k W22k WV-W 

N-(z) 

= 421 k Oh (z, W’N-W 

+ (422(z, b) - $21 (z, Wll (z, W1412(z, ms- 

+ v-(z) - 421@, Wdz, W’v+(z). WV 

The reflection, transmission, and source functions can 
be identified as 

R(z, b) = ddz, @422@, b)-’ 

Rk 0) = 42&, Wh(z, O)-* 

W, 4 = bhdz, 0) - R(z, bM21(z> b)) 

TVA 4 = (422@, W - R(z, W&2(~)) 

~(b, z) = v+(z) - R(z, @v-(z) 

~(0, z) = v-(z) - R(z, O)v+(z), (A9 

which can be proved by showing that (A4) reproduces 
the equations given by ( 5 ) . For example, consider the 
left column in (A5 ). Writing ( 12) in full and using the 
relation, 
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dR(z, b) = 

dz 
-R(z 

7 
b) dddz, b) + dh(z, b) 

dz dz 

x 422k w’, 646) 

leads to the first Riccati equation in (5). The trans- 
mission matrix T( b, z) can be written as 

Vb, d = (h(z, 0) - R(z, Wdz, 0)). (A7) 

Proceeding as before, the second equation of (5 ) is 
reproduced. Next, the pseudosource term t( b, z) in 
(A4) can be written as 

E(b, z) = v+(z) - R(z, b)v-(z). 648) 

Writing (,42) in full and using (A8) leads to the third 
equation of (5). It now remains to determine the con- 
stants s+ and s-. These may be found by using the 
relations given by (A3 ), now expressed as 

N+(z) = R(z, b)N-(z) + T(b, z)s+ + E(b, z) 

N-(z) = R(z,O)N+(z) + T(0, z)s- + ~(0, z) (A9) 

and using the boundary conditions for N+(z) and 
N-(z). Applying the boundary conditions N+ (z = b) 
= N+(b) and N- (z = 0) = N-(O) and using initial 
conditions given by (7) yields 

u+(O) = t(b, 0) v-(b) = ~(0,b) 

v+(b) = 0 v-(O) = 0 

Ub, 0) R(O, b) 

and 
1 

1 
d0) = 

0 

R(b, 0) W, b) 
(AlO) 

Hence, the Fourier-Riccati formulation with the iden- 
tifications of (A5 ) yields a solution to the RTE ex- 
pressed by ( 1 1 ). 

b. Uniqueness and stability oj’the Fourier-Riccati 
method 

Having shown that the Riccati formulation yields a 
solution to ( 11) as well as connecting operators R and 
T to the fundamental solution 4(z), questions con- 
cerning uniqueness and stability of the system of IVPs 
given by equations ( 5) can now be addressed. In order 
for the solution to ( 11) to be unique (hence allow for 
the unique solution of R, T, and c), it is necessary that 
the matrix defined by M,c$( b) + M&(O) be invertible. 
Although this proof is given in Ascher et al. ( 1988), it 
is readily demonstrated that this must be the case by 
applying the boundary conditions to Eq. (A 1). The 
boundary conditions can be expressed as 

M&b) + M&O) = 
N+(b) [ 1 N-(O) ’ (Al 1) 

Inserting (A 1) into (A 11) yields 

Wb#W + h#Wl :: [ 1 
N+(b) 

= N-(O) 1 1 - M,v(b) - Mdv(0). (A12) 

Carrying out the indicated operations and using (A 10) 
shows that M,,c#J( b) + M&(O) is nonsingular, assuring 
that ( 11) possesses a unique solution. 

The developments above are significant in describing 
the stability of the BVPs given by Eq. (3). It was re- 
marked in section 3 that in the case of a medium ex- 
hibiting vertically uniform, horizontally variable ex- 
tinction and scattering functions, that the fundamental 
solution was described by a (complex) matrix expo- 
nential. The stability of the solution is known in this 
case to depend on the sign of the eigenvalues of A [if 
all the eigenvalues are negative, A is called a stability 
matrix (Bellman 1970)]. Therefore, the solution Zrr( z) 
contains, in general, linear combinations of exponen- 
tials containing both positive and negative eigenvalues. 
For large z, the growing exponentials will dominate, 
and careless use of the fundamental solution leads to 
numerical instability. The behavior just described is 
called dichotomic, and is well known in the mathe- 
matical literature (Russell 1985; van Loon 1985; 
Mattheij 1985; Smith 1987). When the cloud also ex- 
hibits vertical nonuniformity, the eigenvalues of A(z) 
do not always characterize the stability of the BVP. 

The Riccati approach is useful numerically because 
it decomposes 4(z) into a product of a direction matrix 
T(z) and a growth vector w(z). More specifically, 4(z) 
describes the propagation of the boundary conditions 
and T(z) consists of column vectors associated with 
the eigenvectors of A(z) in the constant coefficient case 
[in the variable coefficient case the interpretation is 
not so straightforward, but the notion of directional 
dependence is still applicable; see Ascher et al. ( 1988)]. 
Through w(z), the increasing and decaying solutions 
associated with (A2) are characterized. Through this 
function, stable computation of increasing solutions 
with decreasing distances and decaying solutions for 
increasing distances is possible. In the case of separated 
boundary conditions, or interest here, it can be shown 
that the initial condition at z = 0 controls the decaying 
solutions, whereas the condition at z = b controls the 
increasing solutions of 4(z) (Dieci et al. 1988; Ascher 
et al. 1988). 

To fix these ideas, transformation matrix T(z) is 
defined as 

T(z) = 

and T-‘(z) = (-RI(;) :); tA13) 



3144 JOURNAL OF THE ATMOSPHERIC SCIENCES VOL. 50, No. 18 

R(z) an m X m matrix (identified with the reflection It is readily seen that w(z) satisfies the relation 
matrix operator), and I a unit matrix also of size 
m X m. Next, the following products: dwtd 

- = U(z)w(z) + w,(z). 
dt 

(Al3 

&z) = T(z)w(z) and w,(z) = 7-‘(z)R(z) (A14) Matrix U(z) may also be shown to satisfy the Lyapunov 

are formed, where 
equation 

U(z) = T-‘(z) A(z)T(z) - y . b4w 

w(z) = 
w(z)+ [ 1 ( 1 
w(z)- * Using (28,lO) and requiring that U(z) be upper tri- 

angular leads to 

( 

u I (z) u22w 

1 ( 

-t(z) + r(z)R(z) r(z) 

U2dz) U22(z) = 0 t(z) - WMz) 1 

-t(z) + r(z)R(z) r(z) 
= 

l 

dW) 
t(z) - R(z)r(z) ’ 

1 

WV 
-r(z) + t(z)R(z) + R(z)t(z) - R(z)r(z)R(z) - clz 

whence the Riccati equation is again recovered. The 
equations for the radiances are obtained using (A 15 ) (0, b) then R must possess certain properties that pre- 

dw+( z) 
vent the potentially unbounded growth of R described 

-= 
dz 

--(t(z) - r(z)R(z))w+(z) in the previous paragraph. Certainly in practice, no 
great difficulties were encountered in integrating (5 ) 

+ r(z)w-(z) + W,‘(Z) 
for any reasonably behaved scattering and extinction 
functions. Then the integrability of the Riccati equa- 

dw-( z) 
- = (t(z) - r(z)R(z))w-(z) + W:(Z). (A18) 

tions depends crucially on the local transmission and 

dz scattering operators t and r, which have not yet been 

The second of these equations is identical to that de- 
fining t( 0, z), the first to r~+ (z). Hence, the stability 
of the IVPs associated with ( 5) is established. 

While (A 18 ) can be stably integrated, there appears 
to be no guarantee that R(z) is bounded in the interval 
(0, b). This can happen because the fundamental so- 
lutions 422( z, b) or @II (z, 0) may become singular. In 
that case, it is still possible to use the Riccati equation, 
provided that the integration at the trouble spot is re- 
started with a new and bounded value of R(z). This 
corresponds to calculating a new fundamental solution 
on the next subinterval. The exact details for carrying 
out this procedure are discussed at length in Ascher et 

discussed. 
Confining the discussion of radiative transfer to two 

dimensions for simplicity of exposition but without 
loss of generality, and noting that the sinusoidal com- 
ponents of the radiance vector are all equal to zero 
because the radiance vector is symmetric in azimuth, 
the structure of the aforementioned matrices is now 
described. The transmission matrix exhibits the fol- 
lowing structure, 

t = t, + t, - t,, 6419) 

where t, is (in this example, only two azimuthal modes 
M = 2 are needed to show the pattern in the matrix) 

al. ( 1988 ) and will not be elaborated here. Another 
technique that has been successfully employed to con- 
tinue the integration of the Riccati equation is the use 
of R- ’ ( see Scott and Vandevender 1975 ) . It can be 
shown that the inverse also satisfies a Riccati equation, 
with a starting value taken just prior to reaching the 
singularity. This method has received criticism from 
Nelson et al. ( 1978). 

M=O 

M’=O M’=l 

b4W 

c. Boundedness of the Fourier-Riccati solutions 

The results obtained above are in a sense overly gen- 
eral: if the RTE is to have a solution within any interval 

M-l 
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and cy is 

s(N+U-2) .._. =( 1) 
a(l) a(O) a(-l)..a(-2) ar( U ) (r(N+U-1) _._ .+ 2) 

Matrix 0, a circulant matrix, is written in full. Each 
of its elements a(k) contains amplitude and phase in- 
formation associated with the Fourier transform of the 
extinction function. The dependence of CX( k) on the 
vertical position z has been suppressed for notational 
convenience. This matrix circulant character arises as 
a consequence of the periodicity imposed by the dis- 
crete Fourier transform ( CY( i + mT) = a( i) for any 
integer m) and is defined by the spatial convolution of 
the extinction with the radiance in ( I ). 

Matrix t, has purely imaginary elements and arises 
from two operations: azimuthal integration of the ra- 
diance followed by Fourier transformation of the hor- 
izontal gradient. Its structure is (in this example the 
form of the matrix is illustrated with three azimuthal 
modes) : 

M’=O M’=l Ml=2 

M=O 

M-l 

M=2 

6422) 

where qk is a vector in u whose elements are 

E[-u... u- I]. (~23) 

The index k refers to the kth quadrature point and 
2L, is the horizontal spatial domain spanned by the 
cloudy medium. Matrix t, is given by 

M'=O M’=l 

M=O 

M=l 

3 ww 

whereas matrix r is structurally identical in form to t, 
differing only by the replacement of the moments of 
the phase function Pt by P!,. Quantities PI’, and s 
appearing in the matrix subblocks designate the weights 
associated with the (Gaussian) quadrature points and 
the circulant matrix associated with the scattering 
function, patterned after the extinction matrix, re- 
spectively. 

The connection between the boundedness of the 
Riccati equation and energy conservation has been 
thoroughly investigated by Bellman et al. ( 1965) and 
Bellman ( 1970). In those works the fundamental 
properties of R and T are established for a scattering 
and absorbing medium whose inhomogeneity is con- 
fined to variations along the z axis only. Furthermore, 
the Riccati equations are derived in physical space, 
hence the elements of the local reflection and trans- 
mission matrices are purely real quantities. More pre- 
cisely, Y,, t 0 while t is a nonnegative matrix. This 
contrasts with the properties of the matrix operators 
in this study, which are in general complex. Hence, 
the results of those studies are unfortunately not im- 
mediately applicable to the Riccati formulation devel- 
oped in this paper in spite of the formal similarity of 
the Riccati equations. Therefore, a generalization of 
the developments of Bellman et al. ( 1965) appears 
necessary. Instead of pursuing such an extension here 
whose development warrants separate study, some as- 
pects of the numerical behavior of the Riccati equation 
will be described. These observations are evidence sup- 
porting the conjecture that the latter system remains 
bounded over the interval of integration. Beginning 
with the Riccati equation 

dW, 0) 
dz 

+ R(z, O)rR(z, 0) - R(z, 0)t 

- tR(z, 0) + r = 0 (A25) 

and focusing on a vertically uniform, horizontally in- 
homogeneous medium, let the analytical solution be 
given by 

R(z, 0) = e-"t,be-". 6426) 

Such a transformation leads to the integral equation 

s 

I 
R(t, 0) = - et(‘-“)( R( z’, O)rR( z’, 0) + r) 

0 

x &z-z’) dz’, (A27) 

as is easily verified. If this integral is to remain bounded 
over some specified interval, it is reasonable to expect 
the complex eigenvalues Xk oft to have a positive real 
part greater than zero. This implies that R(z) is de- 
creasing exponentially with increasing distance z. 
Therefore, the previous integral equation can be written 
as 
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TABLE A I. This table summarizes the numerical behavior of the 
eigenvalues associated with the t matrix. In all cases the eigenvalues 
were positive. With the exception of the plane-parallel case. degeneracy 
(denoted by D) was observed in isotropic nonconservative scattering. 
It is interesting that no degeneracy (N) was noted in conservative 
scattering with an anisotropic phase function. The eigenvalues were 
calculated to within seven decimal places of precision. Symbol H.G 
designated a Henyey-Greenstein-type phase function. Phase C. 1 is 
the standard Deirmendjian phase function. 

ct’ s Phase H.G Phase C. I 

~ -, and --, 1977: Calculation of the direct, scattered and 
iota1 solar radiant fluxes and their distributions for cumulus 
clouds. /II* Atmo\ OL*CUIII(’ Phys., 13, 184- 190. 

Cahalan, R. F.. 1989: Overview of fractal clouds. Ad\,~lnc~j,s in Remote 
Sensing Retricwd Mcthod.c. A. Deepak, H. E. Fleming, and 
J. S. Theon, Eds., A. Deepak, 37 1-389. 

-, and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. 
I-l’ea. Rev., 117, 26 l-277 -. 

Cogley, A. C., 198 1: Initial results for multidimensional radiative 
transfer by the adding/doubling method. Fourth Conf: on At- 
mospheric Radiation, Toronto, Amer. Meteor. Sot., 79-8 1. 

Crosbie, A. L., and T. L. Linsenbardt, 1978: Two-dimensional iso- 

1 

exp( -7rx’) 

1 + sin(*x) 

2 

1 

1 

exp( -xx*) 

1 + sin(7rx) 

1 + sin(+x) 

exp(-7rx*) 

g = 0.0 D 
g = 0.7 D 
g = 0.0 D 
g = 0.7 N 
g = 0.0 D 
g = 0.7 N 
g = 0.0 D 
g = 0.7 D 
g = 0.0 D 
g = 0.7 D 

- tropic scattering in a semi-infinite medium. J. Quant. Spectrosc. 
- Radiat. Transjk, 19, 257-284. 

g=O. N Davies, R., 1976: The three-dimensional transfer of solar radiation 
in clouds. Ph.D thesis, University of Wisconsin, 2 19 pp. [Avail- 

g=O. N able from Dept. of Atmospheric and Oceanic Sciences, 1225 
West Dayton St., Wisconsin 53706.1 

g=O. D -, 1978: The effect of finite geometry on three-dimensional transfer 
of solar irradiance in clouds. J. Atmos. Sci., 35, 17 12-1724. 

g=O. D -, 1984: Reflected solar radiances from broken cloud scenes and 
the interpretation of scanner measurements. J. Geophys. Res., 
89,1259-1266. 

s 

t 

R n+l = - et(‘-“)( R,rR, + r)e’(‘-“)dz’ (A28) 
0 

with R. = 0. Hence, R, should constitute a sequence 
of successive approximations converging in the limit 
of infinite iteration to R. The necessity of having pos- 
itive eigenvalues is that diagonalizing ePti results in a 
matrix whose entries are linear combinations of 
Z r-‘e-XK;‘T the exponent Y being determined by the 
multiplicity of the kth eigenvalue. The Jordan canon- 
ical form that generates the aforementioned linear 
combination of exponentials collapses to a diagonal 
matrix if and only if all the eigenvalues are distinct. 
Su- prisingly, numerical experiments have shown that 
it is possible for all the Xk to be different. The relation- 
ship of Xk to the extinction, scattering and phase func- 
tions is not simple, as is evident from Table A 1. 
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